Design of High-Performance Electric Motors

Numerical Modeling of Electrical Machines, Tampere University
Guest lecture, 2.12.
D.Sc. Antti Lehikoinen, antti@smeklab.com

© 2020 Smeklab Ltd
Contents

• What is ’high performance’?
• Technology landscape
 • Businesses on the field
 • Trends and developments
• Windings
 • Why they are important
 • Losses and modelling
• Optimization
 • Basics

• Will prolly skip some material: plz reach out to antti@smeklab.com
Researcher Background

Antti Lehikoinen

- D.Sc. from Aalto University, 2017
- Consulting engineer & founder at Smeklab Ltd, 2017-
- EV, aviation, and high-speed motors
- FEA software development
 - EMDtool Matlab toolbox, pics →
- Contact
 - antti@smeklab.com
 - www.smeklab.com
What is ‘high performance’?

This lecture POV
High-Performance Motors?

• Subjective term

• Focus on this lecture: motors for electric vehicles (EV) and aviation

• Defining characteristics
 • High power density: kW/kg and kW/l
 • High torque density
 • High efficiency
 • Compact size
High-Performance Motors

Available today:

• Power density: 5-15 kW / kg, nowadays
 • Gasoline engines typically 0.1 – 2 kW / kg or so
• Future targets (for aviation) up to 20-50 kW/kg

• Torque density
 • Up to 110 Nm/l of rotor/airgap volume
Technology Landscape

Thoughts and experiences

For informational purposes only, you should not construe any such information or other material as legal, tax, investment, financial, or other advice yada yada 😊

© 2020 Smeklab Ltd
Business landscape

• Motors for electric vehicles and aviation are *not* standardized off-the-shelf components
 • Not like many industrial motors: pumps, blowers, fans, mills, etc.
 • Room for startups and smaller innovators

• Two main development categories:
 • For sales
 • For own products
Motor-as-product

EV examples:
• YASA
 • Classic, yokeless and segmented armature axial flux machine
• Magnax
 • Also of YASA-topology

Aviation examples:
• MagniX
• H3X

YASA topology.
Motor-for-product

• Many EV companies choose to develop their own motors
 • All big players, practically
 • Also many small/niche products
 • Cannot find suitable product on market
 • Want their own IP

• Note: ’EVs’ >> 4-wheel passenger cars
 • 2-wheelers: e-bikes, e-motorcycles
 • 3-wheelers; prominent in SE Asia
 • Last-mile-delivery vehicles: huge market (apparently), desire for low maintenance
 • Trucks
 • Mining vehicles
Trends

- New semiconductors
 - SiC, GaN
 - Higher switching frequencies

- Increasing rpms and fundamental frequencies
 - Increasing rpm helps increase power density
 - Increasing pole-count helps somewhat with power density
Trends in Aviation

Ambitious programs and goals for electric aviation

• Short-haul fully electric flight (~1000 km) perhaps viable in half a decade

• Hybrid schemes for longer flights
 • Boundary layer ingestion
 • Distributed propulsion

• Technology projections and programs
 • By NASA and similar
 • E.g. ASCEND: MW-level concept @ 12 kW/kg & 97% combined motor+inverter+thermal management

• Urban air taxis and similar

Lilium uEV concept.
Windings

Design, Cooling, and Analysis

© 2020 Smeklab Ltd
Importance of windings

• Power from Lorentz force:
 \[P = \mathbf{v} \cdot \mathbf{F} = \mathbf{v} \cdot B \cdot l \mathbf{I} = \mathbf{v} \cdot B \cdot l \cdot J A_{\text{copper}} \]

Implications:

• \(B = \text{flux density} \) = cannot be increased much
 • Iron saturation
 • Ironless superconducting machines \textit{might} help in the future

• \(\mathbf{v} = \text{surface speed of rotor} \)
 • \(\sim \)diameter x rpm
 • Can – and continuously is – increased \textit{somewhat}
 • Space / gearbox requirements
 • Mechanical design difficulties: stresses and resonances
Importance of windings

\[P = v \cdot F \sim v \cdot B \cdot lI = v \cdot B \cdot l \cdot J A_{\text{copper}} \]

- Increasing current density \(J \) and copper area \(\rightarrow \) most scalable way of increasing power
Current density: Being pushed higher

- DC-resistive losses:
 \[W_{DC} \sim \rho l A_{copper} J^2 \]

- Efficiency
 \[\eta = \frac{P}{P + \text{losses}} \sim \frac{vJBlA_{copper}}{vJBlA_{copper} + rJ^2 + W_{iron}} \]

 - Iron losses proportional to \sim \text{speed} \ldots \text{speed}^2

\rightarrow Increasing surfaces speeds allow higher current densities
 - Without sacrificing efficiency
 - Increased power density, harder cooling
Current density: Being pushed higher

- Pen-and-paper calculation
- Rules-of-thumb:
 - 5 Arms / mm^2 : air-cooled motors
 - 15 Arms / mm^2 : water jacket
 - 25 Arms / mm^2 : 1-3 cooling channels per slot
 - 30-100 Arms / mm^2 : direct wire-to-coolant contact
Windings: AC losses

• Increasing frequencies:
 • Increased surface speeds
 • Increased pole count → reduces yoke mass, increases airgap diameter
 • New semiconductors (SiC, GaN) an enabling tech
 • ~ 1 kHz in traction motors, tops
 • 2-4 kHz researched for aviation

→ AC losses in windings become important
Windings: AC losses

Two components:

• Eddy-current effects
 • Non-uniform J inside each conductor
 • Mitigation: thin strands in parallel

• Circulating currents
 • Un-equal total currents in parallel strands
 • Different leakage flux seen by each strand
 • Mitigation:
 • Litz wire
 • Continuously transposed conductors
 • 'Braided' end-windings
Windings: AC losses

Continuously transposed conductor. https://static1.squarespace.com/static/5bb2324501232ca58974d603/t/5c6a9a3e6e9a7f0b4e3b6e8a/1550490177542/Continuously+Transposed+Conductor+CTC+catalogue.pdf

End-winding transpositions in hairpin winding, modified. Analytical Approach to Design Hairpin Windings in High Performance Electric Vehicle Motors
Current density in slot

• Poorly-designed induction motor
• 6 turns per slot
 • ~ 12 parallel strands
• Obvious differences in current density and total current in each strand
• Losses compounded by PWM supply
AC loss computation

Options:

• Full finite-element solution
 • Each conductor a solid meshed body
 • AVI formulation
 • Accurate but time-consuming

• Post-processing approaches
 • Conductors simulated as uniform current density sources
 • Eddy-effects estimated in post-processing, circulating currents ignored

• Advanced approaches
 • Homogenization (see papers from Gyselinck)
 • Point-conductor models for circulating currents (yours truly)
 • Macro-element model
 • Full AVI model, but x10s faster
 • Yours truly
AC loss - Postprocessing

- Post-processing: squared-field derivative approach
- Source: Special Course on Electromechanics 2016, Aalto University, Arkkio et al.

\[J = \sigma E \]
\[E = -x \frac{dB}{dt} \]
\[p = \frac{P}{V} = \frac{4}{\pi l d^2} \int_V J E dV = \frac{4\sigma}{\pi l d^2} \int_V \left(x \frac{dB}{dt} \right)^2 dV \]
\[= \frac{4\sigma}{\pi l d^2} \left(\frac{dB}{dt} \right)^2 \int_{-d/2}^{d/2} x^2 \sqrt{\frac{d}{2} - x^2} dx = \sigma \frac{d^2}{16} \left(\frac{dB}{dt} \right)^2 \]
AC Losses – Advanced Approaches

Point-conductors

- Each strand represented by 2D point = delta functional
 - E.g. mass matrix:
 \[M_{ij} = \int \sigma(x, y) \varphi_i(x, y) \varphi_j(x, y) dx dy = \sigma A_{\text{strand}} \varphi_i(x_c, y_c) \varphi_j(x_c, y_c) \]
 - Accounts for circulating currents, eddies with post-processing
AC Losses – Advanced Approaches

Macro-element approach

• Goes by many names: Schur complement, iterative substructuring etc.

• Idea:
 • Eliminate winding nodes & voltages with simple matrix algebra
 \[
 \begin{bmatrix}
 S_{ff} & S_{fw} \\
 S_{wf} & S_{ff}
 \end{bmatrix}
 \begin{bmatrix}
 a_f \\
 a_w
 \end{bmatrix} =
 \begin{bmatrix}
 f_f \\
 f_w
 \end{bmatrix}
 \] (1)
 • Solve for
 \[a_w = S_{ww}^{-1}(f_w - S_{wf}a_f) \] (2)
 • Substitute back (1), solve for \(a_f \) only
 • Much smaller problem <> denser matrix
 • Obtain \(a_w \) with (1)
 • \(f_w \) changes with time
 • Store LU-factorization of \(S_{ww} \) for speedups (e.g. Matlab’s decomposition class)
 • In case of regular mesh, reuse same factorization for all slots/coils

Conductor vector potentials + voltages

© 2020 Smeklab Ltd
Windings – Cooling

• Increasing current densities → increased loss densities
 • The heat still has to go somewhere
• New insulation materials help somewhat
 • Higher temperature → easier heat extraction
• Current approaches
 • Flooded stator, 1-2 cooling channels per slot
 • Separate cooling pipes
 • Current densities up to 25-27 Arms/mm^2
Windings – Cooling

How to get to 35-60 Arms/mm^2?

• Winding resin becomes the limiting factor
 • Low thermal conductivity, ~0.2-0.4 W/mK
 • Conductors furthest from cooling channel overheat

• Need to minimize the distance each wire to nearest heat sink
 • Or greatly improved resins
Winding – Direct cooling approaches

• Hollow conductors with coolant
 • Great cooling performance
 • Good up to 1 kHz or so
 • Would need smaller conductors to go higher \(\rightarrow \) assembly difficult

• Additive manufacturing?
 • Shaped conductors with internal and/or external flow
 • Printing tech getting there, slowly
Optimization

Electric Motors POV
Optimization?

• Want ’the best’ motor, in some sense
 • Usually several senses: size, efficiency, price, etc.

→ Motor optimization is
• Multi-objective
 • Study e.g. tradeoffs between size and efficiency
• ’Black-box’ : based on FEA simulations
 • No simple equation to play with
• Derivative-free : no access to gradients
 • See above
Multi-Objective Optimization

- No single best design
- Pareto front
 - ’Best you can get’
 - Can’t improve one characteristic without worsening other(s)
Genetic algorithms

• Genetic algorithms are common
 • And other heuristic optimizers

• Simple principle
 • Each design characterized by a few (2-15 usually) dimensions to be optimized
 • Inner diameter, magnet thickness, slot depth, etc.
 • Maintain a set of independent, different designs: a population
 • Improve population over time: generations

• Quite easy in reality; don’t be afraid to code your own 😊
Genetic Algorithms

• A few typical steps
 1. Create initial population
 2. Select individuals for ’breeding’
 3. Create new individuals
 4. Select best ones for new generation
 5. Go to 2.
1. Initial Population

• Often created purely randomly
• Latin Hypercubes and similar may help in getting more diverse population
 • Good for exploring entire design space

• Smarter approaches welcome
 • Initial Pareto front often within 20 % of the final, or so
2. Select individuals for breeding

- Looooots of approaches
- Binary tournament(?) is simple:
 - Randomly pick two candidates
 - Select the better(*) one

(*) Discussed later
3. Generate offspring

• Again, lots of approaches
• A simple one:

1. Pick two parents (see previous slide)

2. Offspring dimensions = randomly weighted mean of parents
 • Example: parent one has an inner radius of 100 mm, parent 2 has 110 m
 • Offspring radius is within 98 mm and 112 mm
 • Called ’cross-over’

3. Occasionally (e.g. 10 % of time) add ’mutation’: random variations independent of parents
4a. Select best individuals for new generation

- Easy in single-objective optimization: just pick the N best ones
- Multi-objective: several approaches
- NSGA-style is quite easy:
 1. Order designs in fronts
 - Red: actual Pareto front, best
 - Blue: front after red is removed
 - Yellow: etc
 2. Additionally: compute distance score for each design
 - To avoid lumps of designs close together

Modified: https://en.wikipedia.org/wiki/Pareto_efficiency
4b. Select best individuals for new generation

Pick designs for new generation:
• First from red front, ordered by distance score
• Then from second front
• …
 Continue until have N designs
4c. Archiving

- Usually: good idea to select best designs from combined parent and offspring populations
 - Good parents outlive bad offspring
 - Never discards optimal designs

- Called *archiving*
Genetic algorithms: Result

- Population gets better with generations
Conclusions
Conclusions

Overview on high-performance motors:

• Landscape and trends
• Windings: one critical component
• Optimization and genetic algorithms: general-purpose tool

• Contact:
 antti@smeklab.com
 www.smeklab.com

© 2020 Smeklab Ltd